Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations
نویسندگان
چکیده
منابع مشابه
Strichartz Estimates and Local Smoothing Estimates for Asymptotically Flat Schrödinger Equations
In this article we study global-in-time Strichartz estimates for the Schrödinger evolution corresponding to long-range perturbations of the Euclidean Laplacian. This is a natural continuation of a recent article [28] of the third author, where it is proved that local smoothing estimates imply Strichartz estimates. By [28] the local smoothing estimates are known to hold for small perturbations o...
متن کاملDispersive Estimates, Strichartz Estimates and Smoothing Effects
In this short expository note, we will discuss three subjects: dispersive estimates, Strichartz estimates and smoothing effects which are of great importance in the study of dispersive equations. We will focus on the Euclidean setting and try to derive the interplay among above three objects. We will mainly focus on linear problems in various contexts. Some nonlinear application will also be me...
متن کاملStrichartz Estimates on Asymptotically De Sitter Spaces
In this article we prove a family of local (in time) weighted Strichartz estimates with derivative losses for the KleinGordon equation on asymptotically de Sitter spaces and provide a heuristic argument for the non-existence of a global dispersive estimate on these spaces. The weights in the estimates depend on the mass parameter and disappear in the “large mass” regime. We also provide an appl...
متن کاملStrichartz Type Estimates for Fractional Heat Equations
We obtain Strichartz estimates for the fractional heat equations by using both the abstract Strichartz estimates of Keel-Tao and the HardyLittlewood-Sobolev inequality. We also prove an endpoint homogeneous Strichartz estimate via replacing L∞x (R ) by BMOx(R) and a parabolic homogeneous Strichartz estimate. Meanwhile, we generalize the Strichartz estimates by replacing the Lebesgue spaces with...
متن کاملGlobal Strichartz estimates for approximations of the Schrödinger equation
We consider a semidiscrete scheme for the linear Schrödinger equation with high order dissipative term. We obtain maximum norm estimates for its solutions and we prove global Strichartz estimates for the considered model, estimates that are uniform with respect to the mesh size. The methods we employ are based on classical arguments of harmonic analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2008.05.022